Resveratrol ameliorates diabetic nephropathy in rats through negative regulation of the p38 MAPK/TGF-β1 pathway
نویسندگان
چکیده
Resveratrol (RSV) has been shown to have a renoprotective effect against diabetic nephropathy, but the underlying mechanisms of this have not been fully elucidated. The aim of the current study was to explore the mechanisms responsible for the therapeutic effects of RSV in rat mesangial cells in vitro and in a rat model of diabetic nephropathy. The viability of CRL-2573 rat mesangial cells and their expression levels of p38, phosphorylated (p)-p38, transforming growth factor beta 1 (TGF-β1) and fibronectin were assessed in response to treatment with high glucose, with or without RSV. Diabetic nephropathy was also induced in Sprague-Dawley rats by streptozotocin treatment. At 8 weeks, basic biochemical parameters and histopathological abnormalities as well as the expression of p38, p-p38, TGF-β1 and fibronectin in rat kidneys were compared between control diabetic rats and those treated with 20 mg/kg RSV daily for 4 weeks. In the mesangial cell line, RSV inhibited high glucose-induced increases in cell viability and fibronectin expression by significantly reducing p38 mitogen-activated protein kinase (MAPK) activation and TGF-β1 expression (P<0.05). In diabetic rats, RSV significantly decreased blood glucose, serum creatinine and urinary albumin levels, as well as the kidney weight and ratio of kidney weight/body weight compared with the control group (P<0.05). Moreover, RSV ameliorated renal histological changes and downregulated the expression of p-p38, TGF-β1 and fibronectin in the kidneys of diabetic rats. These data suggested that RSV protected renal tissue from diabetes-induced injury and that this activity may be via inhibition of the p38 MAPK/TGF-β1 signaling pathway.
منابع مشابه
Reduced beta 2 glycoprotein I improves diabetic nephropathy via inhibiting TGF-β1-p38 MAPK pathway.
PURPOSE Beta 2 glycoprotein I (β2GPI) has been shown the positive effect on diabetic atherosclerosis and retinal neovascularization. β2GPI can be reduced by thioredoxin-1, resulting in the reduced state of β2GPI. The possible protective effects of β2GPI and reduced β2GPI on diabetic nephropathy (DN) are not fully elucidated. The purpose of this study was to test a hypothesis that β2GPI and redu...
متن کاملTribbles 3 Regulates the Fibrosis Cytokine TGF-β1 through ERK1/2-MAPK Signaling Pathway in Diabetic Nephropathy
To reveal the expression and possible role of tribbles homolog 3 (TRB3) in the incidence of type 2 diabetic nephropathy, we used immunohistochemistry, real-time quantitative PCR, western blot analysis, and enzyme-linked immunosorbent assay (ELISA) to study the expression of TRB3, extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK), transforming growth factor...
متن کاملRecombinant fibromodulin has therapeutic effects on diabetic nephropathy by down-regulating transforming growth factor-β1 in streptozotocin-induced diabetic rat model
Objective(s):Diabetic nephropathy is an important long-term complication of diabetes mellitus which appears to be partially mediated by an increase in secretion of transforming growth factor-β (TGF-β). Fibromodulin, the small leucine-rich proteoglycan, has been proposed to be the potent TGFβ1 modulator. In this study, the therapeutic effects of recombinant adenoviral vectors expressing fibromod...
متن کاملThe Role of the p38 MAPK Signaling Pathway in High Glucose-Induced Epithelial-Mesenchymal Transition of Cultured Human Renal Tubular Epithelial Cells
BACKGROUND Epithelial-mesenchymal transition of tubular epithelial cells, which is characterized by a loss of epithelial cell characteristics and a gain of ECM-producing myofibroblast characteristics, is an essential mechanism that is involved in tubulointerstitial fibrosis, an important component of the renal injury that is associated with diabetic nephropathy. Under diabetic conditions, p38 M...
متن کاملReduced beta 2 glycoprotein I improve diabetic nephropathy via inhibiting TGF-β1-p38 MAPK pathway [Retraction].
[This retracts the article on p. 6852 in vol. 8, PMID: 26221223.].
متن کامل